skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Renguang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Atmospheric rivers (ARs) reaching high-latitudes in summer contribute to the majority of climatological poleward water vapor transport into the Arctic. This transport has exhibited long term changes over the past decades, which cannot be entirely explained by anthropogenic forcing according to ensemble model responses. Here, through observational analyses and model experiments in which winds are adjusted to match observations, we demonstrate that low-frequency, large-scale circulation changes in the Arctic play a decisive role in regulating AR activity and thus inducing the recent upsurge of this activity in the region. It is estimated that the trend in summertime AR activity may contribute to 36% of the increasing trend of atmospheric summer moisture over the entire Arctic since 1979 and account for over half of the humidity trends in certain areas experiencing significant recent warming, such as western Greenland, northern Europe, and eastern Siberia. This indicates that AR activity, mostly driven by strong synoptic weather systems often regarded as stochastic, may serve as a vital mechanism in regulating long term moisture variability in the Arctic. 
    more » « less
  2. Abstract This study examines the climate response to a sea surface temperature (SST) warming imposed over the southwest Tropical Indian Ocean (TIO) in a coupled ocean-atmosphere model. The results indicate that the southwest TIO SST warming can remotely modulate the atmospheric circulation over the western North Pacific (WNP) via inter-basin air-sea interaction during early boreal summer. The southwest TIO SST warming induces a “C-shaped” wind response with northeasterly and northwesterly anomalies over the north and south TIO, respectively. The northeasterly wind anomalies contribute to the north TIO SST warming via a positive Wind-Evaporation-SST(WES) feedback after the Asian summer monsoon onset. In June, the easterly wind response extends into the WNP, inducing an SST cooling by WES feedback on the background trade winds. Both the north TIO SST warming and the WNP SST cooling contribute to an anomalous anticyclonic circulation (AAC) over the WNP. The north TIO SST warming, WNP SST cooling, and AAC constitute an inter-basin coupled mode called the Indo-western Pacific ocean capacitor (IPOC), and the southwest TIO SST warming could be a trigger for IPOC. While the summertime southwest TIO SST warming is often associated with antecedent El Niño, the warming in 2020 seems to be related to extreme Indian Ocean Dipole in 2019 fall. The strong southwest TIO SST warming seems to partly explain the strong summer AAC of 2020 over the WNP even without a strong antecedent El Niño. 
    more » « less